FreeFEM Documentation on GitHub

stars - forks

# Tutorial

Authors: Pierre-Henri Tournier - Frédéric Nataf - Pierre Jolivet

We recommend checking the slides version of this tutorial.

## What is ffddm ?

• ffddm implements a class of parallel solvers in FreeFEM: overlapping Schwarz domain decomposition methods
• The entire ffddm framework is written in the FreeFEM language ffddm aims at simplifying the use of parallel solvers in FreeFEM
You can find the ffddm scripts here (‘ffddm*.idp’ files) and examples here
• ffddm provides a set of high-level macros and functions to
• handle data distribution: distributed meshes and linear algebra
• build DD preconditioners for your variational problems
• solve your problem using preconditioned Krylov methods
• ffddm implements scalable two level Schwarz methods, with a coarse space correction built either from a coarse mesh or a GenEO coarse space Ongoing research: approximate coarse solves and three level methods
• ffddm can also act as a wrapper for the HPDDM library.
HPDDM is an efficient C++11 implementation of various domain decomposition methods and Krylov subspace algorithms with advanced block and recycling techniques More details on how to use HPDDM within ffddm here

## Why Domain Decomposition Methods ?

How can we solve a large sparse linear system $$A u = b \in \mathbb{R}^n$$ ? ### Step 1: Decompose the mesh

Build a collection of $$N$$ overlapping sub-meshes $$(Th_{i})_{i=1}^N$$ from the global mesh $$Th$$

 1 ffddmbuildDmesh( prmesh , ThGlobal , comm ) 
• mesh distributed over the MPI processes of communicator comm
• initial mesh ThGlobal partitioned with metis by default
• size of the overlap given by ffddmoverlap (default 1)

prmesh#Thi is the local mesh of the subdomain for each mpi process

  1 2 3 4 5 6 7 8 9 10 macro dimension 2// EOM // 2D or 3D include "ffddm.idp" mesh ThGlobal = square(100,100); // global mesh // Step 1: Decompose the mesh ffddmbuildDmesh( M , ThGlobal , mpiCommWorld ) medit("Th"+mpirank, MThi); 

Copy and paste this to a file ‘test.edp’ and run it:

 1 ff-mpirun -np 2 test.edp -wg 

### Step 2: Define your finite element

 1 ffddmbuildDfespace( prfe , prmesh , scalar , def , init , Pk ) 

builds the local finite element spaces and associated distributed operators on top of the mesh decomposition prmesh

• scalar: type of data for this finite element: real or complex
• Pk: your type of finite element: P1, [P2,P2,P1], …
• def, init: macros specifying how to define and initialize a Pk FE function

prfe#Vhi is the local FE space defined on prmesh#Thi for each mpi process

Example for P2 complex:

 1 2 3 4 macro def(u) u // EOM macro init(u) u // EOM ffddmbuildDfespace( FE, M, complex, def, init, P2 ) 

Example for [P2,P2,P1] real:

 1 2 3 4 macro def(u) [u, u#B, u#C] // EOM macro init(u) [u, u, u] // EOM ffddmbuildDfespace( FE, M, real, def, init, [P2,P2,P1] ) 

#### Distributed vectors and restriction operators Natural decomposition of the set of d.o.f.’s $${\mathcal N}$$ of $$Vh$$ into the $$N$$ subsets of d.o.f.’s $$({\mathcal N}_i)_{i=1}^N$$ each associated with the local FE space $$Vh_i$$

${\mathcal N} = \cup_{i=1}^N {\mathcal N}_i\,,$

but with duplications of the d.o.f.’s in the overlap

_Definition_ a distributed vector is a collection of local vectors $$({\mathbf V_i})_{1\le i\le N}$$ so that the values on the duplicated d.o.f.’s are the same:

${\mathbf V}_i = R_i\,{\mathbf V}, \quad i = 1, ..., N$

where $${\mathbf V}$$ is the corresponding global vector and $$R_i$$ is the restriction operator from $${\mathcal N}$$ into $${\mathcal N}_i$$

Remark $$R_i^T$$ is the extension operator: extension by $$0$$ from $${\mathcal N}_i$$ into $${\mathcal N}$$

#### Partition of unity Duplicated unknowns coupled via a partition of unity:

$I = \sum_{i = 1}^N R_i^T D_i R_i$

$$(D_i)_{1\le i \le N}$$ are square diagonal matrices of size $$\#{\mathcal N}_i$$

${\mathbf V} = \sum_{i = 1}^N R_i^T D_i R_i {\mathbf V} = \sum_{i = 1}^N R_i^T D_i {\mathbf V_i}$

#### Data exchange between neighbors

 1 func prfe#update(K[int] vi, bool scale) 

synchronizes local vectors $${\mathbf V}_i$$ between subdomains $$\Rightarrow$$ exchange the values of $$mathbf{V}_i$$ shared with neighbors in the overlap region

${\mathbf V}_i \leftarrow R_i \left( \sum_{j=1}^N R_j^T D_j {\mathbf V}_j \right) = D_i {\mathbf V}_i + \sum_{j\in \mathcal{O}(i)} R_i\,R_j^T\,D_j {\mathbf V}_j$

where $$\mathcal{O}(i)$$ is the set of neighbors of subdomain $i$. Exchange operators $$R_i\,R_j^T$$ correspond to neighbor-to-neighbor MPI communications

 1 FEupdate(vi, false); 
${\mathbf V}_i \leftarrow R_i \left( \sum_{j=1}^N R_j^T {\mathbf V}_j \right)$
 1 FEupdate(vi, true); 
${\mathbf V}_i \leftarrow R_i \left( \sum_{j=1}^N R_j^T D_j {\mathbf V}_j \right)$
  1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 macro dimension 2// EOM // 2D or 3D include "ffddm.idp" mesh ThGlobal = square(100,100); // global mesh // Step 1: Decompose the mesh ffddmbuildDmesh( M , ThGlobal , mpiCommWorld ) // Step 2: Define your finite element macro def(u) u // EOM macro init(u) u // EOM ffddmbuildDfespace( FE , M , real , def , init , P2 ) FEVhi vi = x; medit("v"+mpirank, MThi, vi); vi[] = FEDk[mpirank]; medit("D"+mpirank, MThi, vi); vi = 1; FEupdate(vi[],true); ffddmplot(FE,vi,"1") FEupdate(vi[],false); ffddmplot(FE,vi,"multiplicity") 

### Step 3: Define your problem

 1 ffddmsetupOperator( pr , prfe , Varf ) 

builds the distributed operator associated to your variational form on top of the distributed FE prfe

Varf is a macro defining your abstract variational form

 1 2 3 macro Varf(varfName, meshName, VhName) varf varfName(u,v) = int2d(meshName)(grad(u)'* grad(v)) + int2d(meshName)(f*v) + on(1, u = 0); // EOM 

$$\Rightarrow$$ assemble local ‘Dirichlet’ matrices $$A_i = R_i A R_i^T$$

$A = \sum_{i=1}^N R_i^T D_i A_i R_i$

Warning

only true because $$D_i R_i A = D_i A_i R_i$$ due to the fact that $$D_i$$ vanishes at the interface !!

pr#A applies $$A$$ to a distributed vector: $${\mathbf U}_i \leftarrow R_i \sum_{j=1}^N R_j^T D_j A_j {\mathbf V}_j$$

$$\Rightarrow$$ multiply by $$A_i$$ + prfe#update

  1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 macro dimension 2// EOM // 2D or 3D include "ffddm.idp" mesh ThGlobal = square(100,100); // global mesh // Step 1: Decompose the mesh ffddmbuildDmesh( M , ThGlobal , mpiCommWorld ) // Step 2: Define your finite element macro def(u) u // EOM macro init(u) u // EOM ffddmbuildDfespace( FE , M , real , def , init , P2 ) // Step 3: Define your problem macro grad(u) [dx(u), dy(u)] // EOM macro Varf(varfName, meshName, VhName) varf varfName(u,v) = int2d(meshName)(grad(u)'* grad(v)) + int2d(meshName)(1*v) + on(1, u = 0); // EOM ffddmsetupOperator( PB , FE , Varf ) FEVhi ui, bi; ffddmbuildrhs( PB , Varf , bi[] ) ui[] = PBA(bi[]); ffddmplot(FE, ui, "A*b") 

## Summary so far: translating your sequential FreeFEM script

### Step 1: Decompose the mesh

 1 mesh Th = square(100,100); 
 1 2 mesh Th = square(100,100); ffddmbuildDmesh(M, Th, mpiCommWorld) 

Step 2: Define your finite element

 1 fespace Vh(Th, P1); 
 1 2 3 macro def(u) u // EOM macro init(u) u // EOM ffddmbuildDfespace(FE, M, real, def, init, P1) 

 1 2 varf Pb(u, v) = ... matrix A = Pb(Vh, Vh); 
 1 2 3 macro Varf(varfName, meshName, VhName) varf varfName(u,v) = ... // EOM ffddmsetupOperator(PB, FE, Varf) 

### Solve the linear system

 1 u[] = A^-1 * b[]; 
 1 ui[] = PBdirectsolve(bi[]); 

### Solve the linear system with the parallel direct solver MUMPS

 1 func K[int] pr#directsolve(K[int]& bi) 

We have $$A$$ and $$b$$ in distributed form, we can solve the linear system $$A u = b$$ using the parallel direct solver MUMPS

 1 2 3 // Solve the problem using the direct parallel solver MUMPS ui[] = PBdirectsolve(bi[]); ffddmplot(FE, ui, "u") 

### Step 4: Define the one level DD preconditioner

 1 ffddmsetupPrecond( pr , VarfPrec ) 

builds the one level preconditioner for problem pr.

By default it is the Restricted Additive Schwarz (RAS) preconditioner:

$M^{-1}_1 = M^{-1}_{\text{RAS}} = \sum_{i=1}^N R_i^T D_i A_i^{-1} R_i \quad \text{with}\; A_i = R_i A R_i^T$

_Setup step_: compute the $$LU$$ (or $$L D L^T$$) factorization of local matrices $$A_i$$

pr#PREC1 applies $$M^{-1}_1$$ to a distributed vector: $${\mathbf U}_i \leftarrow R_i \sum_{j=1}^N R_j^T D_j A_j^{-1} {\mathbf V}_i$$

$$\Rightarrow$$ apply $$A_i^{-1}$$ (forward/backward substitutions) + prfe#update

### Step 5: Solve the linear system with preconditioned GMRES

 1 func K[int] pr#fGMRES(K[int]& x0i, K[int]& bi, real eps, int itmax, string sp) 

solves the linear system with flexible GMRES with DD preconditioner $$M^{-1}$$

• x0i: initial guess
• bi: right-hand side
• eps: relative tolerance
• itmax: maximum number of iterations
• sp: “left” or “right” preconditioning

left preconditioning

solve $$M^{-1} A x = M^{-1} b$$

right preconditioning

solve $$A M^{-1} y = b$$

$$\Rightarrow x = M^{-1} y$$

  1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 macro dimension 2// EOM // 2D or 3D include "ffddm.idp" mesh ThGlobal = square(100,100); // global mesh // Step 1: Decompose the mesh ffddmbuildDmesh( M , ThGlobal , mpiCommWorld ) // Step 2: Define your finite element macro def(u) u // EOM macro init(u) u // EOM ffddmbuildDfespace( FE , M , real , def , init , P2 ) // Step 3: Define your problem macro grad(u) [dx(u), dy(u)] // EOM macro Varf(varfName, meshName, VhName) varf varfName(u,v) = int2d(meshName)(grad(u)'* grad(v)) + int2d(meshName)(1*v) + on(1, u = 0); // EOM ffddmsetupOperator( PB , FE , Varf ) FEVhi ui, bi; ffddmbuildrhs( PB , Varf , bi[] ) // Step 4: Define the one level DD preconditioner ffddmsetupPrecond( PB , Varf ) // Step 5: Solve the linear system with GMRES FEVhi x0i = 0; ui[] = PBfGMRES(x0i[], bi[], 1.e-6, 200, "right"); ffddmplot(FE, ui, "u") PBwritesummary 

## Define a two level DD preconditioner

Goal improve scalability of the one level method

$$\Rightarrow$$ enrich the one level preconditioner with a coarse problem coupling all subdomains

Main ingredient is a rectangular matrix $$\color{red}{Z}$$ of size $$n \times n_c,\,$$ where $$n_c \ll n$$ $$\color{red}{Z}$$ is the coarse space matrix

The coarse space operator $$E = \color{red}{Z}^T A \color{red}{Z}$$ is a square matrix of size $$n_c \times n_c$$

The simplest way to enrich the one level preconditioner is through the additive coarse correction formula:

$M^{-1}_2 = M^{-1}_1 + \color{red}{Z} E^{-1} \color{red}{Z}^T$

How to choose $$\color{red}{Z}$$ ?

## Build the GenEO coarse space

 1 ffddmgeneosetup( pr , Varf ) 

The GenEO method builds a robust coarse space for highly heterogeneous or anisotropic SPD problems

$$\Rightarrow$$ solve a local generalized eigenvalue problem in each subdomain

$D_i A_i D_i\, V_{i,k} = \lambda_{i,k}\, A_i^{\text{Neu}} \,V_{i,k}$

with $$A_i^{\text{Neu}}$$ the local Neumann matrices built from Varf (same Varf as Step 3)

The GenEO coarse space is $$\color{red}{Z} = (R_i^T D_i V_{i,k})^{i=1,...,N}_{\lambda_{i,k} \ge \color{blue}{\tau}}$$ The eigenvectors $$V_{i,k}$$ selected to enter the coarse space correspond to eigenvalues $$\lambda_{i,k} \ge \color{blue}{\tau}$$, where $$\color{blue}{\tau}$$ is a threshold parameter

Theorem the spectrum of the preconditioned operator lies in the interval $$[\displaystyle \frac{1}{1+k_1 \color{blue}{\tau}} , k_0 ]$$ where $$k_0 - 1$$ is the # of neighbors and $$k_1$$ is the multiplicity of intersections $$\Rightarrow$$ $$k_0$$ and $$k_1$$ do not depend on $$N$$ nor on the PDE
  1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 macro dimension 2// EOM // 2D or 3D include "ffddm.idp" mesh ThGlobal = square(100,100); // global mesh // Step 1: Decompose the mesh ffddmbuildDmesh( M , ThGlobal , mpiCommWorld ) // Step 2: Define your finite element macro def(u) u // EOM macro init(u) u // EOM ffddmbuildDfespace( FE , M , real , def , init , P2 ) // Step 3: Define your problem macro grad(u) [dx(u), dy(u)] // EOM macro Varf(varfName, meshName, VhName) varf varfName(u,v) = int2d(meshName)(grad(u)'* grad(v)) + int2d(meshName)(1*v) + on(1, u = 0); // EOM ffddmsetupOperator( PB , FE , Varf ) FEVhi ui, bi; ffddmbuildrhs( PB , Varf , bi[] ) // Step 4: Define the one level DD preconditioner ffddmsetupPrecond( PB , Varf ) // Build the GenEO coarse space ffddmgeneosetup( PB , Varf ) // Step 5: Solve the linear system with GMRES FEVhi x0i = 0; ui[] = PBfGMRES(x0i[], bi[], 1.e-6, 200, "right"); 

## Build the coarse space from a coarse mesh

 1 ffddmcoarsemeshsetup( pr , Thc , VarfEprec , VarfAprec ) 

For non SPD problems, an alternative is to build the coarse space by discretizing the PDE on a coarser mesh Thc

$$Z$$ will be the interpolation matrix from the coarse FE space $${Vh}_c$$ to the original FE space $$Vh$$

$$\Rightarrow E=\color{red}{Z}^{T} A \color{red}{Z}$$ is the matrix of the problem discretized on the coarse mesh

The variational problem to be discretized on Thc is given by macro VarfEprec

VarfEprec can differ from the original Varf of the problem

Example: added absorption for wave propagation problems

Similarly, VarfAprec specifies the global operator involved in multiplicative coarse correction formulas. It defaults to $$A$$ if VarfAprec is not defined

  1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 macro dimension 2// EOM // 2D or 3D include "ffddm.idp" mesh ThGlobal = square(100,100); // global mesh // Step 1: Decompose the mesh ffddmbuildDmesh( M , ThGlobal , mpiCommWorld ) // Step 2: Define your finite element macro def(u) u // EOM macro init(u) u // EOM ffddmbuildDfespace( FE , M , real , def , init , P2 ) // Step 3: Define your problem macro grad(u) [dx(u), dy(u)] // EOM macro Varf(varfName, meshName, VhName) varf varfName(u,v) = int2d(meshName)(grad(u)'* grad(v)) + int2d(meshName)(1*v) + on(1, u = 0); // EOM ffddmsetupOperator( PB , FE , Varf ) FEVhi ui, bi; ffddmbuildrhs( PB , Varf , bi[] ) // Step 4: Define the one level DD preconditioner ffddmsetupPrecond( PB , Varf ) // Build the coarse space from a coarse mesh mesh Thc = square(10,10); ffddmcoarsemeshsetup( PB , Thc , Varf , null ) // Step 5: Solve the linear system with GMRES FEVhi x0i = 0; ui[] = PBfGMRES(x0i[], bi[], 1.e-6, 200, "right"); 

## Use HPDDM within ffddm

ffddm allows you to use HPDDM to solve your problem, effectively replacing the ffddm implementation of all parallel linear algebra computations

$$\Rightarrow$$ define your problem with ffddm, solve it with HPDDM

$$\Rightarrow$$ ffddm acts as a finite element interface for HPDDM

You can use HPDDM features unavailable in ffddm such as advanced Krylov subspace methods implementing block and recycling techniques

To switch to HPDDM, simply define the macro pr#withhpddm before using ffddmsetupOperator (Step 3). You can then pass HPDDM options with command-line arguments or directly to the underlying HPDDM operator:

 1 2 3 macro PBwithhpddm()1 // EOM ffddmsetupOperator( PB , FE , Varf ) set(PBhpddmOP,sparams="-hpddm_krylov_method gcrodr"); 

Or, define pr#withhpddmkrylov to use HPDDM only for the Krylov method

Example here: Helmholtz problem with multiple rhs solved with Block GMRES

## Some results: Heterogeneous 3D elasticity with GenEO

Heterogeneous 3D linear elasticity equation discretized with P2 FE solved on 4096 MPI processes $$n\approx$$ 262 million ## Some results: 2-level DD for Maxwell equations, scattering from the COBRA cavity

f = 10 GHz

f = 16 GHz ## Some results: 2-level DD for Maxwell equations, scattering from the COBRA cavity

• order 2 Nedelec edge FE

• fine mesh: 10 points per wavelength

• coarse mesh: 3.33 points per wavelength

• two level ORAS preconditioner with added absorption

• f = 10 GHz: $$n\approx$$ 107 million, $$n_c \approx$$ 4 million

f = 16 GHz: $$n\approx$$ 198 million, $$n_c \approx$$ 7.4 million

$$\rightarrow$$ coarse problem too large for a direct solver $$\Rightarrow$$ inexact coarse solve: GMRES + one level ORAS preconditioner speedup of 1.81 from 1536 to 3072 cores at 10GHz

1.51 from 3072 to 6144 cores at 16GHz

You can find the script here