FreeFEM Documentation on GitHub

stars - forks



PIRONNEAU, Olivier and LUCQUIN-DESREUX, Brigitte. Introduction to scientific computing. Wiley, 1998.


WÄCHTER, Andreas and BIEGLER, Lorenz T. On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical programming, 2006, vol. 106, no 1, p. 25-57.


FORSGREN, Anders, GILL, Philip E., and WRIGHT, Margaret H. Interior methods for nonlinear optimization. SIAM review, 2002, vol. 44, no 4, p. 525-597.


GEORGE, P. L. and BOROUCHAKI, H. Automatic triangulation. 1996.


HECHT, F. The mesh adapting software: bamg. INRIA report, 1998, vol. 250, p. 252.


PREPARATA, F. P. and SHAMOS, M. I. Computational Geometry Springer-Verlag. New York, 1985.


STROUSTRUP, Bjarne. The C++ programming language. Pearson Education India, 2000.


HECHT, Frédéric. C++ Tools to construct our user-level language. ESAIM: Mathematical Modelling and Numerical Analysis, 2002, vol. 36, no 5, p. 809-836.


SI, Hang. TetGen Users’ guide: A quality tetrahedral mesh generator and three-dimensional delaunay triangulator. 2006


SHEWCHUK, Jonathan Richard. Tetrahedral mesh generation by Delaunay refinement. In : Proceedings of the fourteenth annual symposium on Computational geometry. ACM, 1998. p. 86-95.


HECHT, F. Outils et algorithmes pour la méthode des éléments finis. HdR, Université Pierre et Marie Curie, France, 1992.


HECHT, Frédéric. BAMG: bidimensional anisotropic mesh generator. User Guide. INRIA, Rocquencourt, 1998.


KARYPIS, George and KUMAR, Vipin. METIS–unstructured graph partitioning and sparse matrix ordering system, version 2.0. 1995.


CAI, Xiao-Chuan. Some domain decomposition algorithms for nonselfadjoint elliptic and parabolic partial differential equations. 1989.


SAAD, Yousef. Iterative methods for sparse linear systems. siam, 2003.


SMITH, B. P. Bj rstad and W. Gropp, Domain Decomposition. 1996.


OGDEN, Ray W. Non-linear elastic deformations. 1984.


RAVIART, Pierre-Arnaud, THOMAS, Jean-Marie, CIARLET, Philippe G., et al. Introduction à l’analyse numérique des équations aux dérivées partielles. Paris : Dunod, 1998.


HORGAN, Cornelius O. and SACCOMANDI, Giuseppe. Constitutive models for compressible nonlinearly elastic materials with limiting chain extensibility. Journal of Elasticity, 2004, vol. 77, no 2, p. 123-138.


LEHOUCQ, Richard B., SORENSEN, Danny C., and YANG, Chao. ARPACK users’ guide: solution of large-scale eigenvalue problems with implicitly restarted Arnoldi methods. Siam, 1998.


NECAS, Jindrich and HLAVÁCEK, Ivan. Mathematical theory of elastic and elasto-plastic bodies: an introduction. Elsevier, 2017.


OHTSUKA, K. Theoretical and Numerical analysis of energy release rate in 2D fracture. INFORMATION, 2000, vol. 3, p. 303-315.


TABATA, M. Numerical solutions of partial differential equations II. Iwanami Applied Math, 1994.


PIRONNEAU, O. and LUCQUIN-DESREUX, B. Introduction to scientific computing. Wiley, 1998.


WILMOTT, Paul, HOWISON, Sam and DEWYNNE, Jeff. A student introduction to mathematical finance. 1995.


ACHDOU, Yves and PIRONNEAU, Olivier. Computational methods for option pricing. Siam, 2005.


TEMAM, Roger. Navier-Stokes equations: theory and numerical analysis. 1977.


ROBERTS, J. E. and THOMAS, J. M. Mixed and Hybrid Methods, Handbook of Numerical Anaysis, Vol. II. North-Holland, 1993, vol. 183, p. 184.


GLOWINSKI, R. and PIRONNEAU, O. On numerical methods for the Stokes problem. In: Energy methods in finite element analysis.(A79-53076 24-39) Chichester, Sussex, England, Wiley-Interscience, 1979, p. 243-264., 1979, p. 243-264.


GLOWINSKI, Roland and ODEN, J. Tinsley. Numerical methods for nonlinear variational problems. Journal of Applied Mechanics, 1985, vol. 52, p. 739.


GLOWINSKI, Roland. Finite element methods for incompressible viscous flow. Handbook of numerical analysis, 2003, vol. 9, p. 3-1176.


ITO, Kazufumi and KUNISCH, Karl. Semi–smooth Newton methods for variational inequalities of the first kind. ESAIM: Mathematical Modelling and Numerical Analysis, 2003, vol. 37, no 1, p. 41-62.


HINTERMÜLLER, Michael, ITO, Kazufumi, et KUNISCH, Karl. The primal-dual active set strategy as a semismooth Newton method. SIAM Journal on Optimization, 2002, vol. 13, no 3, p. 865-888.


OXBORROW, Mark. Traceable 2-D finite-element simulation of the whispering-gallery modes of axisymmetric electromagnetic resonators. IEEE Transactions on Microwave Theory and Techniques, 2007, vol. 55, no 6, p. 1209-1218.


GRUDININ, Ivan S. and YU, Nan. Finite-element modeling of coupled optical microdisk resonators for displacement sensing. JOSA B, 2012, vol. 29, no 11, p. 3010-3014.


ERN, A. and GUERMOND, J. L. Discontinuous Galerkin methods for Friedrichs’ symmetric systems. I. General theory. SIAM J. Numer. Anal.


BERNADOU, Michel, BOISSERIE, Jean-Marie and HASSAN, Kamal. Sur l’implémentation des éléments finis de Hsieh-Clough-Tocher complet et réduit. 1980. Thèse de doctorat. INRIA.


BERNARDI, Christine and RAUGEL, Genevieve. Analysis of some finite elements for the Stokes problem. Mathematics of Computation, 1985, p. 71-79.


THOMASSET, François. Implementation of finite element methods for Navier-Stokes equations. Springer Science & Business Media, 2012.


CROUZEIX, Michel and MIGNOT, Alain L. Analyse numérique des équations différentielles. Masson, 1984.


TAYLOR, Mark A., WINGATE, Beth A. and BOS, Len P. Several new quadrature formulas for polynomial integration in the triangle. arXiv preprint math/0501496, 2005.


CHOW, Edmond and SAAD, Yousef. Parallel Approximate Inverse Preconditioners. In : PPSC. 1997.

Table of content