Global variables
area
Area of the current triangle.
1fespace Vh0(Th, P0);
2Vh0 A = area;
ARGV
Array that contains all the command line arguments.
1for (int i = 0; i < ARGV.n; i++)
2 cout << ARGV[i] << endl;
See Command line arguments example for a complete example.
BoundaryEdge
Return 1 if the current edge is on a boundary, 0 otherwise.
1real B = int2d(Th)(BoundaryEdge);
CG
Conjugate gradient solver.
Usable in problem and solve definition
1problem Laplacian (U, V, solver=CG) = ...
Or in matrix construction
1matrix A = vLaplacian(Uh, Uh, solver=CG);
Or in set function
1set(A, solver=CG);
Cholesky
Cholesky solver.
Crout
Crout solver.
edgeOrientation
Sign of \(i-j\) if the current edge is \([q_i, q_j]\).
1real S = int1d(Th, 1)(edgeOrientation);
false
False boolean value.
1bool b = false;
GMRES
GMRES solver (Generalized minimal residual method).
hTriangle
Size of the current triangle.
1fespace Vh(Th, P0);
2Vh h = hTriangle;
include
Include an external library.
1include "iovtk"
InternalEdge
Return 0 if the current edge is on a boundary, 1 otherwise.
1real I = int2d(Th)(InternalEdge);
label
Label number of a boundary if the current point is on a boundary, 0 otherwise.
1int L = Th(xB, yB).label;
lenEdge
Length of the current edge.
For an edge \([q_i, g_j]\), return \(|q_i-q_j|\).
1real L = int1d(Th, 1)(lenEdge);
load
Load a script.
1load "Element_P3"
LU
LU solver.
N
Outward unit normal at the current point if it is on a curve defined by a border.
N.x, N.y, N.z
are respectively the \(x\), \(y\) and \(z\) components of the normal.
1func Nx = N.x;
2func Ny = N.y;
3func Nz = N.z;
nTonEdge
Number of adjacent triangles of the current edge.
1real nTE = int2d(Th)(nTonEdge);
nuEdge
Index of the current edge in the triangle.
1real nE = int2d(Th)(nuEdge);
nuTriangle
Index of the current triangle.
1fespace Vh(Th, P0);
2Vh n = nuTriangle;
P
Current point.
1real cx = P.x;
2real cy = P.y;
3real cz = P.z;
pi
Pi = 3.14159.
1real Pi = pi;
This is a real value.
region
Region number of the current point. If the point is outside, then region == notaregion
where notaregion
is a FreeFEM integer constant.
1int R = Th(xR, yR).region;
sparsesolver
Sparse matrix solver.
true
True boolean value.
1bool b = true;
verbosity
Verbosity level.
1int Verbosity = verbosity;
2verbosity = 0;
0 = nothing, 1 = little information, 10 = a lot of information, …
This is an integer value.
version
FreeFEM version.
1cout << version << endl;
volume
Volume of the current tetrahedra.
1fespace Vh0(Th, P0);
2Vh0 V = volume;
x
The \(x\) coordinate at the current point.
1real CurrentX = x;
This is a real value.
y
The \(y\) coordinate at the current point.
1real CurrentY = y;
This is a real value.
z
The \(z\) coordinate at the current point.
1real CurrentZ = z;
This is a real value.